HERMETICALLY SEALED ELECTRICAL PENETRATOR ASSEMBLY

A penetrator device has an outer housing of non-conductive, insulating material having a through bore, at least one conductive pin formed in one or two parts extending through the housing and having a first end portion and a second end portion extending out of the respective first and second ends of the housing, a first cladding layer bonded over the first end portion of the pin to form a first bonded assembly, a second cladding layer bonded over the second end portion of the pin to form a second bonded assembly, and the material of the first and second cladding layer comprising a corrosion resistant conductive material different from the pin material.
brazing or bonding process, the parts expand by different amounts. Once the penetrator assembly is allowed to cool, the different rates of shrinkage of the different material parts causes stress on the ceramic housing material, brittle bonds, or both, and may lead to failure of the seal. Thus, known penetrator sealing or encapsulation methods involving surface plating or coating may not stand up to the wear and abrasion that can occur in handling, assembly, and repeated subsea mate/de-mate processes, and corrosion may occur at the brazed or welded interfaces.

Summary

Embodiments described herein provide for a physically encapsulated or hermetically sealed electrical penetrator or connector assembly and method for use in subsea and other harsh environments.

According to one embodiment, an electrical penetrator or connector assembly is provided which comprises a housing or sleeve of insulating material such as ceramic having a through bore and front and rear ends, at least one conductive pin formed in one or two parts extending through the housing and having a forward end portion and a rear end portion extending out of the respective forward and rear ends of the housing, the forward end portion having a tip and the rear end portion having a rear end face, a first cladding layer bonded over the forward end portion of the pin including the tip to form a first bonded assembly, and a second cladding layer bonded over the rear end portion of the pin including the rear end face to form a second bonded assembly, the cladding material comprising a corrosion resistant conductive material different from the pin material.

In one embodiment, a first metal sleeve is brazed or welded over the interface between the insulating sleeve and first bonded assembly, and a second metal sleeve is brazed or welded over the interface between the insulating sleeve or housing and the second bonded assembly. In one embodiment, the conductive pin comprises first and second conductors each having a first end and a second, outer end, and the first end of the first conductor has a bore with the first end of the second conductor slidably engaged in the bore. An internal sliding contact band may be provided between the opposing faces of the bore and first end of the second conductor, to maintain electrical contact between the conductors as they move inwardly and outwardly. The interface between the first and second conductors may be located in the rear end portion of the conductive pin within the second cladding layer in one embodiment, or may be within the bore in the insulating sleeve in other embodiments.

The cladding layer may be bonded to the conductor
end portions via brazing with a braze filler or by eutectic bonding. The cladding material is a corrosion resistant metal or alloy which is inert or substantially inert to the subsea environment, unlike the conductive pin which is typically of copper or the like. Suitable corrosion resistant metals or alloys are titanium or titanium alloy, nickel, stainless steel, Inconel® (an alloy of nickel, chromium and iron which is resistant to corrosion at high temperatures), and the like.

• In another aspect, a method of manufacturing a physically encapsulated conductor end portion of a subsea penetrator assembly comprises forming a piece of cladding material having opposite first and second ends and a bore extending inward from a first end and having an inner end spaced from the second end, inserting an end portion of a conductor into the bore up to the inner end of the bore, joining adjacent surfaces of the bore and conductor end portion together by brazing or welding, machining external surfaces of the cladding to form a bonded assembly having a predetermined conductor end shape, and joining the bonded assembly to one end of an insulator housing of a subsea penetrator.

Brief Description of the Drawings

[0004]

• The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which:

 • FIG. 1 is a perspective view of one embodiment of an electrical penetrator pin assembly, partially cut away to reveal the encapsulated, hermetically sealed conductor end portions;
 • FIG. 2 is an enlarged cut away view of the front end portion of the penetrator pin assembly;
 • FIG. 3 is an enlarged, cut away view of the rear end of the penetrator pin assembly;
 • FIGS. 4A-4D are cut away views illustrating one embodiment of a method of making the bonded front end portion of FIG. 2 and joining it the remainder of the assembly; and
 • FIGS. 5A to 5C are cut away perspective views illustrating steps of one embodiment of a method of making the bonded rear end portion of FIG. 3 and joining it to the remainder of the penetrator assembly.

Detailed Description

[0005]

• Certain embodiments as disclosed herein provide for an electrical penetrator assembly suitable for use in high pressure applications, such as in providing power for subsea equipment.

• After reading this description it will become apparent to one skilled in the art how to implement the invention in various alternative embodiments and alternative applications. However, although various embodiments of the present invention will be described herein, it is understood that these embodiments are presented by way of example only, and not limitation. As such, this detailed description of various alternative embodiments should not be construed to limit the scope or breadth of the present invention.

• FIGS. 1 to 3 illustrate one embodiment of an electrical penetrator pin assembly or subassembly 10 for mounting in an outer penetrator housing (not illustrated) configured for extending through a wall or bulkhead of a subsea vessel or container. The pin subassembly 10 includes an outer body or housing 14 of ceramic or other insulating material, the housing 14 having a through bore 15. The outer body may be similar or identical to insulator bodies described in US Pat. No. 8,968,018, the contents of which are incorporated herein by reference. A two part conductor pin extends through the bore in housing 14 and projects outwards at first and second ends of housing 14 to terminate in first and second encapsulated end portions or bonded assemblies 18, 19. In the illustrated embodiment, the first encapsulated end portion 18 has a rounded tip 30 for engagement in a corresponding socket in a mating subsea connector unit and the second encapsulated end portion terminates with an integral or separate cable connector 32, but both ends may terminated in rounded tips or with cable connectors in other embodiments, depending on the installation requirements.

• In the illustrated embodiment, a first part 20 of the pin extends through the bore 15 in housing 14 and projects out of both ends of the housing. As best illustrated in FIG. 3, one projecting end of pin part 20 at the second encapsulated end portion 19 of the assembly is telescopically engaged in a bore 21 in second pin part 22 so that the overall length of the conductive pin assembly can vary slightly. An internal sliding contact band 25 mounted in an annular recess in bore 21 provides a sliding electrical engagement or contact interface between conductive pin parts 20 and 22 while permitting the pins to telescope inwardly and outwardly to compensate for various types of stress. This arrangement allow a small amount of relative movement between the conductors to accommodate slightly different amounts of expansion and contraction of the parts of the penetrator assembly under temperature variations as a result of different coefficients of thermal expansion of the parts of the penetrator assembly, as described in US Pat. No. 8,968,018 referenced above. Other contact arrangements may be provided in alternative embodiments. The two part conductor pin is made of a suitable rigid conductive material such as copper.
or the like. In other embodiments, the conductor pin may be in one part or may have two parts engaging within the housing bore rather than outside the bore as in the illustrated embodiment.

- A cylindrical metal sealing sleeve 27 is brazed onto a recessed region 28 of the ceramic body at each end of the penetrator, and projects beyond the end of the penetrator. As best illustrated in FIG. 2, the first encapsulated end portion or bonded assembly 18 includes a cladding layer or outer layer 26 which extends over the forward end of conductor or conductor part 20 to form rounded tip 30, and a relatively thin sleeve portion 33 of cladding layer 18 extends rearward from tip 30 over the conductor part 20 up to the forward end of metal sealing sleeve 27 to encapsulate the otherwise exposed end of conductor 20. The conductor part 20 has an enlarged diameter forward end portion 34 forming inwardly facing shoulder or step 35, and a metal weld ring 36 forming part of the bonded assembly extends from the end of housing 14 up to step 35 and across the junction 38 between sealing sleeve 27 and the inner end of cladding layer 26. Weld ring 36 has an outer diameter equal or substantially equal to the diameter of housing recess 28. In some embodiments, the cladding layer is joined to conductor part 20, weld ring 36, and sealing sleeve 27 by brazing with a braze filler between opposing surfaces of the parts, or by eutectic bonding. The cladding material is a corrosion resistant metal or alloy which is inert or substantially inert to the subsea environment, unlike the conductive pin which is typically of copper or the like. Suitable corrosion resistant metals or alloys are titanium or titanium alloy, nickel, stainless steel, Inconel®, and the like.

- The second encapsulated end portion or bonded assembly 19 is illustrated in more detail in FIG. 3, and comprises a cladding layer or coating layer 40 which covers the outer end of conductor part 22 and extends inward over the outer surface of conductor part 22 up to the end 44 of insulating housing 14. Cladding layer 40 has a recess 45 in its outer surface extending from the inner end face 74 of the cladding layer up to step 75 (see FIG. 5C). Recess 45 is of the same dimensions as corresponding recess 28 at the outer end of housing 14, and the second metal sealing sleeve 27 is seated in the recesses 28, 45 and suitably bonded or brazed to the recesses in the cladding layer 40 and housing 14, as illustrated in FIG. 3. The outer surface of cladding layer 40 is shaped to form a cable connector along part of its length. The inner surface of cladding layer 40 is joined to the outer surface and outer end face of conductor pin part 22 by brazing with a braze filler between the opposing surfaces or by eutectic bonding. Cladding layer 40 is suitably of the same corrosion resistant metal or alloy as cladding layer 26 at the opposite end of the penetrator assembly. In one embodiment, the cladding material was titanium or titanium alloy which is inert or substantially inert to the seawater environment.

- FIGS. 4A to 5C illustrate one embodiment of a method of manufacturing a penetrator assembly with encapsulated conductor end portions 18 and 19 as illustrated in FIGS. 1 to 3. FIGS. 4A to 4D illustrate steps in the manufacture of first encapsulated end portion 18 with a rounded tip 30. This version may be provided at both ends of the penetrator assembly in some embodiments, or at one end only as illustrated in FIGS. 1 to 3. The first step is to make or form a cylindrical piece 50 of the cladding material with a bore 52 of predetermined diameter extending inward from one end of piece 50. At this stage, the cylindrical wall of piece 50 is relatively thick, and thicker than the desired final wall thickness of the finished part. Enlarged end portion 34 of conductor pin or pin part 20 is then inserted into the bore 52 in cladding piece 50 as illustrated in FIG. 4A, until it contacts the inner end of bore 52. In one embodiment, the respective diameters of pin end portion 34 and bore 52 are selected so that portion 34 is a press fit in bore 52. In another embodiment, space is provided for a braze filler between the opposing faces of portion 34 and bore 52. The conductor end portion 34 is then joined to the cladding piece 50 by eutectic bonding (in the case of a press fit engagement) or brazing (where a braze filler is used). In eutectic bonding, the system is heated to the eutectic point so as to fuse the cladding layer to the conductor end portion, forming a eutectic bond. Alternatively, a brazing alloy is placed between the cladding layer and the conductor end portion, and the assembly is brazed.

- The external surface of cladding piece 50 is then machined to form the rounded conductor pin tip 30 and a relatively thin walled sleeve portion 33 extending inward from tip 30, as illustrated in FIG. 4B, forming a cap-like shape. The cladding is machined to form as thin a layer as possible so that the electrical resistance through the cladding layer is a low as possible while still providing an effective corrosion barrier. In one embodiment, the final thickness of sleeve portion 33 is substantially equal to the thickness of metal sealing sleeve 27, and in one embodiment the cladding layer was of titanium and had a final thickness in the range from about 0.01 inches to 0.1 inches. However, this thickness may vary depending on the temperature and pressure rating of the part, the size of the part, and the material combination chosen. The initial thickness of the cladding layer prior to machining is chosen so that it has sufficient mechanical stability on its own until it is brazed or bonded to the conductor. The range of thickness prior to machining may be 0.25 to 0.5 inches or more.

- As illustrated in FIG. 4B, the machined cladding layer or sleeve 33 extends inward beyond the enlarged
end portion 34 of conductor pin or part 20 to leave a
gap 54 between the cladding layer and smaller di-
meter part of the pin. Weld ring 36 is engaged over
the conductor part 20 and inserted into the gap 54
inside cladding layer until the forward end of the ring
36 engages the step or shoulder 35 of the enlarged
diameter portion 34 of conductor part 2, as illustrated
in FIG. 4C. The conductor part 20 is then inserted into
the bore 15 in insulator housing 14 until the end face
of the bore 15 butts the inner end of weld ring 36
and the inner end of the cladding layer or sleeve 33
approaches the end of metallic sleeve 27 for the
welding operation, as in FIG. 2. FIG. 4D illustrates
the conductor end portion 18 partially engaged in the
respective end of insulator housing 14, with conduc-
tor part 20 extending into the bore 15 in insulator 14
and the sealing sleeve 27 about to engage in the
projecting end of weld ring 36. End portion 18
continues to be moved towards housing 14 until the
end of weld ring 36 butts the opposing end face of
housing 14, as illustrated in the fully assembled view
of FIG. 2. The weld ring 36 is sized such that, once
fully assembled, the metallic sleeve 27 and the clad-
ing portion 33 are close enough for the welding
operation to join them successfully, without abut-
ting the metallic sleeve 27 and the cladding sleeve
portion 33. The weld ring 36, metallic sleeve 27, and
inner end of the cladding layer are then joined by
welding.

- FIGS. 5A to 5C illustrate steps in a method of manu-
facturing second encapsulated end portion 19 of
the conductor pin. This version may also be provided
at both ends of the penetrator assembly in some em-

domments, or at one end only as illustrated in FIGS.
1 to 3. First, a cylinder 55 of cladding material is
formed with a cylindrical outer surface of uniform di-

meter and a bore 65 extending inwards along most
of the length of piece 55, terminating at end wall 58.
The bore 65 is formed with a step 59 in diameter
between larger diameter first portion 56 and smaller
diameter inner portion 62. Conductor part 22, which
has a stepped outer diameter matching the diameters
of bore portions 62 and 56, respectively, is then
inserted into bore 65 until step 61 in its outer diameter
engages the step 59 in bore 65, as illustrated in FIG.
5A. At this stage, the cylindrical wall of piece 55 is
relatively thick, and thicker than the desired final wall
thickness of the finished part. The length of conduc-
tor part 22 is equal to the length of bore 65 in cylinder
55. The conductor part 22 is either a press fit in bore 65
or a braze filler is provided between opposing
surfaces of conductor part 22 and bore 65.

- Once conductor part 22 is fully inserted into the bore
65, the parts are joined either through brazing with
the braze filler or by eutectic bonding where part 22
is press fit into bore 65. Next, the outer surface of
cladding layer 55 is machined to reduce its thickness
so as to reduce the electrical resistance through the
cladding while still providing an effective corrosion
barrier. The outer surface is also machined to form
the desired outer machined surface shape of a cable
end connector in the final cladding layer 40, as illus-
trated in FIG. 5B. In one embodiment, the outer sur-
face has a first surface portion 80 extending from
end wall 58 to step 85 and having an annular recess
82 prior to step 85, and a second surface portion 84
of larger diameter than portion 80 extending from
step 85 towards the forward end face 74. Recessed
portion 45 is formed at the forward end of cladding
layer 40 for sealing the metal sealing sleeve 27. A blind
bore 21 is machined into end face 88 of conduc-
tor part 22, with shape and dimensions configured for
teleposing engagement with the mating end of conductor 20 when the parts are assembled.
The thickness of the cladding layer prior to machining
and the final thickness of the different regions of clad-
ing layer 40 may be in the thickness ranges de-
scribed above for the cladding layer of encapsulated
end portion 18.

- The assembled encapsulated end portion 19 is then
moved into engagement with the end of the main insulator or insulated housing 14 until the metal seal-
ing sleeve 27 is seated in recess 45 and butts the
edge or end face 75 of the recess, and the projecting
end of conductor part 20 engages in machined bore
21 of conductor part 22, as illustrated in FIG. 3. FIG.
5C illustrates the projecting end of conductor part 20
partially engaged in the bore 21, just before the metal
sealing sleeve 27 engages in recess 45. When the
projecting end is fully engaged in bore 21 as in FIG.
3, the end face 74 of cladding layer 40 butts the
opposing end face 44 of housing 14. The sleeve 27
is joined to cladding layer 40 by welding at welded
interface 75.

- The cladding layer and welded or brazed sleeve at
each end of the penetrator pin assembly or sub-
assembly completely or substantially isolate the con-
ductor pin from potentially corrosive interactions with
fluids such as seawater or other contaminants as
well as reducing the galvanic potential at the ex-
posed interfaces, as compared with traditional pen-
etrator assemblies. The cladding layer walls are
made as thin as possible in order to keep the elec-
trical resistance through the cladding layer as low as
possible while still providing an effective corrosion
barrier. In some embodiments, the cladding layer of
each end portion may be in the ranges discussed
above, and each cladding layer may be of varying
thickness along its length according to installation
requirements. At the same time, the fit between the
inner conductor part and outer cladding layer must
be as close as possible where they are bonded by
a eutectic joint, and the parts are assembled as a
press or shrink-fit in some embodiments. The clad-
ing layer walls are initially relatively thick to allow
for pressing and heating in the bonding step (either
brazing with a braze layer between the parts or by a eutectic joint), followed by post-machining of the cladding layer to the desired external shape. Internal features, such as the bore 21 in conductor part 22, are also post-machined in order to avoid potential distortion of the bore walls during pressing and heating. The metallic sleeves or sealing sleeves 27, the cladding layers at each end of the penetrator assembly, and the weld ring 36 are all made from one or more of the corrosion resistant metals and alloys listed above, and may all be of the same material in some embodiments.

- The above penetrator assembly and method of making the assembly with physically encapsulated conductor end portions protects conductors of copper or the like by completely encasing them with a corrosion-resistant material and reducing the number of dissimilar materials at exposed interfaces. The encapsulated electrical power conductors are hermetically sealed from corrosive environments without significantly increasing Joule heating in operation, by making the cladding layer walls as thin as possible so that the electrical resistance through the cladding layer is kept relatively low. This results in a durable, hermetically sealed, corrosion-resistant penetrator assembly.

- In the above embodiments, a hermetic, physically encapsulated electrical penetrator assembly is provided which is suitable for use in high temperature, high pressure, high voltage, and high current application, such as powering of subsea electrical submersible (ESP) pump equipment which is used to pump hydrocarbons in oil rig installations and the like. Other applications for the penetrator assemblies in the above embodiments include high temperature, high pressure downhole electrical penetrations and other electrical penetrations used in subsea equipment of various types. The penetrator assemblies are scalable for a variety of current and voltage requirements. The physical encapsulation method described above may also be used for other applications where end portions of electrical conductor assemblies are exposed to subsea and other harsh environments which may lead to corrosion at welded interfaces.

- The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.

- The method of the invention preferably, further comprising inserting a second end portion of the conductor into a second bore in a second piece of the cladding material until an end face of the second end portion abuts an inner end wall of the second bore, bonding opposing surfaces of the second bore and the second end portion together by brazing or welding, machining external surfaces of the piece of cladding material to form a second bonded assembly having a predetermined conductor end shape, and joining the second bonded assembly to a second end of the insulator housing.

- The method of the invention preferably, further comprising bonding a second metallic sealing sleeve between the second end of the insulator housing and the second bonded assembly.

- The method of the invention preferably, wherein the external surface of the piece of cladding material is shaped to form a cable connector.

- The method of the invention preferably, wherein the external surface of the piece of cladding material is shaped to form a rounded tip covering the end face of the respective conductor portion and the bonded assembly is configured for mating engagement in a socket of a subsea connector unit.

- The method of the invention preferably, wherein conductor end portion is a press fit in the bore and the bonding comprises forming a eutectic bond between opposing surfaces of the bore and the conductor end portion.

- The method of the invention preferably, further comprising placing a brazing alloy between the opposing surfaces of the conductor end portion and bore and brazing the parts together.

- The method of the invention preferably, wherein the conductor end portion is of stepped diameter and has a larger diameter outer end engaged in the bore, the method further comprising engaging a weld ring over the conductor end portion and partially into the bore until the weld ring contacts the step in diameter between the larger diameter outer end and the remainder of the conductor end portion before joining the first bonded assembly including the weld ring to the first end of the insulator housing.
Claims

1. An electrical penetrator device, comprising:

 an outer housing of non-conductive, insulating material having a through bore and opposite first and second ends;

 • at least one conductive pin formed in one or two parts extending through the housing and having a first end portion and a second end portion extending out of the respective first and second ends of the housing, the first and second end portions terminating at respective first and second end faces;

 • a first cladding layer bonded over at least part of the first end portion of the pin to cover the first end face and exposed outer surfaces of the pin outside the first end of the housing to form a first bonded assembly; and

 • a second cladding layer bonded over the second end portion of the pin to cover the second end face and exposed outer surfaces of the pin outside the second end of the housing to form a second bonded assembly, the material of the first and second cladding layers comprising a corrosion resistant conductive material different from the pin material.

2. The device of claim 1, wherein a first metallic sealing sleeve is bonded between the housing and first bonded assembly, and a second metallic sealing sleeve is bonded between the housing and the second bonded assembly.

3. The device of claim 1, wherein the cladding layer of at least one of the bonded assemblies has a rounded tip covering the end face of the respective conductor portion and is configured for mating engagement in a socket of a subsea connector unit.

4. The device of claim 1, wherein the cladding layer of at least one of the bonded assemblies is shaped to form a cable connector.

5. The device of claim 1, wherein the cladding layer of the first bonded assembly has a rounded tip covering the end face of the first conductor portion and is configured for mating engagement in a socket of a subsea connector unit, and the cladding layer of the second bonded assembly is configured for attachment to a subsea cable.

6. The device of claim 1, wherein the conductive pin comprises a first conductor and a second conductor, the second conductor having an inwardly extending bore and the first conductor having an end portion telescopically engaged in the bore to form a telescopic interface between the conductors.

7. The device of claim 6, wherein the interface between the first and second conductors is located outside the second end of the housing and within the second cladding layer.

8. The device of claim 1, wherein the pin end portions and cladding layer are eutectically bonded in face to face engagement.

9. The device of claim 1, wherein the pin end portions and cladding layer are joined by brazing.

10. The device of claim 2, wherein the first end portion of the pin is of stepped diameter with a larger diameter outer end forming an inwardly facing step and the first bonded assembly further comprises a weld ring engaged over the first end portion of the pin and extending between the first end of the housing and the inwardly facing step, the cladding layer having a tip extending over the first end face of the pin and a sleeve portion which extends inward from the tip over the outer end of the pin and the weld ring and has an inner end bonded to an outer end of the first metallic sealing sleeve.

11. The device of claim 10, wherein the first metallic sealing sleeve extends outward from the first end of the housing over the weld ring up to inner end of the first cladding layer.

12. The device of claim 1, wherein the corrosion resistant conductive material of the first and second cladding layer is selected from the group consisting of: titanium, titanium alloy, nickel, stainless steel, and an alloy of nickel, chromium and iron.

13. A method of manufacturing a physically encapsulated conductor end portion of a subsea penetrator assembly, comprising inserting an end portion of a conductor into a bore extending into a piece of corrosion resistant conductive cladding material until an end face of the conductor abuts an inner end of the bore, bonding opposing surfaces of the bore and the conductor end portion together by brazing or welding, machining external surfaces of the piece of cladding material to form a first bonded assembly having a predetermined conductor end shape, and joining the first bonded assembly to a first end of an insulator housing of a subsea penetrator.

14. The method of claim 13, wherein corrosion resistant, conductive cladding material is selected from the group consisting of: titanium, titanium alloy, nickel, stainless steel, and an alloy of nickel, chromium and iron.
15. The method of claim 13, wherein a metallic sealing sleeve is bonded between the first end of the insulator housing and the first bonded assembly.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WO 2013/048973 A2 (SCHLUMBERGER CA LTD [CA]; SCHLUMBERGER SERVICES PETROL [FR]; SCHLUMBER) 4 April 2013 (2013-04-04) * the whole document *</td>
<td>1-15</td>
<td>ADD. H01R4/02 H01R4/03 H01R4/22</td>
</tr>
<tr>
<td>A</td>
<td>EP 2 882 041 A1 (NEXANS [FR]) 10 June 2015 (2015-06-10) * the whole document *</td>
<td>1,6,14,15</td>
<td>H01R4/22</td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

H01R

The present search report has been drawn up for all claims.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 21-04-2017. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 2013183853 A1</td>
<td>18-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014137561 A1</td>
<td>12-09-2014</td>
</tr>
<tr>
<td>WO 2013048973 A2</td>
<td>04-04-2013</td>
<td>GB 2513014 A</td>
<td>15-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014370735 A1</td>
<td>18-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013048973 A2</td>
<td>04-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015308258 A1</td>
<td>29-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014094163 A1</td>
<td>26-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 102014029470 A2</td>
<td>15-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 337030 B1</td>
<td>04-01-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015155650 A1</td>
<td>04-06-2015</td>
</tr>
<tr>
<td>US 2014188005 A1</td>
<td>03-07-2014</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 8968018 B [0005]